
• Batch reinforcement learning (RL) relies on rewards to refine 
policies. For tasks without reward signals, one may learn a reward 
function from human preferences over experiences. 

• This study investigates how to learn a reward function from 
nonexpert annotators, which allows for leveraging crowdsourcing 
for batch RL. The main challenge is denoising, as nonexpert 
annotators make mistakes in preferences.  

Motivation

Model

Experiment

Conclusion

• MV cannot consistently outperforms BT, due to the fact that only a 
small amount of labels can be collected for each preference query. 

• DCBT outperforms MV, which justifies using estimated P!" and ID 
of annotators for denoising.

• DCBT achieves consistently good performance on all the four 
datasets, which confirms its efficacy and applicability.
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This study proposes a probabilistic model named deep crowd-BT 
(DCBT) for learning a reward function from noisy preferences. 
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𝜂#,% and 𝜂#,& The two trajectories in the 𝑖'( preference sample.
𝑅(𝑠, 𝑎) The reward function to be learned.
𝜎(⋅) The sigmoid function 𝜎 𝑥 = 1/(1 + exp(−𝑥)).
𝛼# The reliability of the preference label in the 𝑖'( sample.
𝑤# The ID of the annotator who labeled the 𝑖'( sample.
7𝑦# 7𝑦# = 1 if 𝜂#,% ≻ 𝜂#,&, 7𝑦# = 0.5 if 𝜂#,% ≈ 𝜂#,&, and 7𝑦# = 0

otherwise. 

P)*!" 𝜂#,% ≻ 𝜂#,& = 𝛼#P!" 𝜂#,% ≻ 𝜂#,& + (1 − 𝛼#) 1 − P!" 𝜂#,% ≻ 𝜂#,&

P!" 𝜂#,% ≻ 𝜂#,& = 𝜎 𝐺 𝜂#,% − 𝐺(𝜂#,&)
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Without noise, the trajectory with larger 
average reward is preferred.

𝛼# depends on three factors:
• 𝑤#
• P!" 𝜂#,% ≻ 𝜂#,&
• Other labels for the same 

pair of trajectories and the 
corresponding annotators
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• Generate synthetic annotators with sampled 
parameters for the probability of reporting 
correct answer.

• The proposed model is compared with the 
Bradley-Terry (BT) model used by previous 
work on preference-based RL and majority 
voting (MV).

For each dataset, learn rewards from the generated preferences, and 
then learn policies using the quantile-regression DQN algorithm. 
The quality of learned policies reflects the performance of reward 
learning algorithms.

Learning

• Use ℓ% and ℓ& regularization, also regularize rewards toward zero 
by: − %

&0
∑# ∑1/%,& log(𝜎(𝐺(𝜂#,1))) + log(𝜎(−𝐺(𝜂#,1))).

• Initialize the reward network by fixing 𝛼# to 0.99 and update the 
reward network using preferences. 
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