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Motivation Learning
« Batch reinforcement learning (RL) relies on rewards to refine * Use ¢, and ¥, regularization, also regularize rewards toward zero
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policies. For tasks without reward signals, one may learn a reward by: ——¥; Yi=12108(0(G(Mik))) +log(a(—GM;1)))-

function from human preferences over experiences.

« This study investigates how to learn a reward function from
nonexpert annotators, which allows for leveraging crowdsourcing
for batch RL. The main challenge is denoising, as nonexpert
annotators make mistakes in preferences.

* Initialize the reward network by fixing a; to 0.99 and update the
reward network using preferences.
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parameters for the probability of reporting
correct answer.

* The proposed model is compared with the

@%owd Bradley-Terry (BT) model used by previous
Workers & Preferences work on preference-based RL and majority
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9 For each dataset, learn rewards from the generated preferences, and

--- then learn policies using the quantile-regression DQN algorithm.
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This study proposes a probabilistic model named deep crowd-BT
(DCBT) for learning a reward function from noisy preferences.
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ni1andn;, The two trajectories in the jth preference sample.
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R(s,a) The reward function to be learned. H
a(-) The sigmoid function o(x) = 1/(1 + exp(—x)). i "“’WIWH
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; . Estimated Pgr
Conv FC | BT MV cannot consistently outperforms BT, due to the fact that only a
: — q — DCBT small amount of labels can be collected for each preference query.
|z | Loss - DCBT outperforms MV, which justifies using estimated Pgr and 1D
; dconvlayers of annotators for denoising.
 iers = 32, 64, 64 - DCBT achieves consistently good performance on all the four
................................ "smoothing” datasets, which confirms its efficacy and applicability.
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