
• Preference-based RL develops agents using human preferences. 
• We argue for interpretability as a first principle. However, prior 

techniques can't select samples for explanation systematically.
• We propose to learn state importance and reward function together. 

Motivation

Approach

Inspecting Reward Models using State Weights

Conclusion

• We propose a method for systematically selecting samples to 
interpret a reward model learned from human preferences.

• We confirm that the learned weights indeed characterize state 
importance.

• With the proposed model, we obtain insights for reward models 
learned from preferences.
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𝜏! and 𝜏" Two trajectories being compared.
𝑐 𝑐 = 1 if 𝜏! is preferred over 𝜏". 𝑐 = 0 otherwise.
𝑓# 𝒮 → ℝ$, a function that encode states into dense vectors.
𝑓% ℝ$ → ℝ, a function that computes state weights.
𝜃& A vector in ℝ$ that is part of the reward function.
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Evaluating State Weights and Performance
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The return of a trajectory is modeled as: 𝐺 𝜏 = 𝜃&( ∑)∈+ 𝑓% 𝑓# 𝑠 𝑓#(𝑠). 
The larger |𝑓% 𝑓# 𝑠 | is, the more important this state is for 𝐺(𝜏). 
Assume a probabilistic model for preferences:

P 𝑐 = 1; 𝜏!, 𝜏" = ,-.(0(+!))
,-. 0 +! 2,-.(0(+"))

.

Modeling Preferences

Learning Rewards and State Weights
We propose to use 𝐿 = 𝐿3, + 𝜆!𝐿! + 𝜆"𝐿" as objective function.

𝐿3, = −𝔼 𝑐 log P 𝑐 = 1; 𝜏!, 𝜏" + (1 − 𝑐)P 𝑐 = 0; 𝜏!, 𝜏" .
Minimization of 𝐿3, leads to a reward model that explains preferences. 
We make the following two assumptions for state weights: (a) only few 
states are critical for preferences, and (b) the critical states span 
multiple time steps. Thus,

𝐿! = 𝔼[|𝑓%(𝑓#(𝑠))|],
𝐿" = 𝔼[(𝑓% 𝑓# 𝑠4 − 𝑓%(𝑓#(𝑠42!)))"].

𝜃&, 𝑓#, and 𝑓% are to be learned from data. After learning, we compute 
the reward of a new state as: 𝑅 𝑠 = 𝜃&(𝑓% 𝑓# 𝑠 𝑓#(𝑠)

Left: A heatmap for state weights on Atari game BeamRider. Upper right: an example for 
states with large absolute weights. The agent was closed to an incoming missile (circled in 
green) in the presence of enemies (circled in blue). Middle right: an example for states with 
weights close to zero. The agent launched missiles (circled in yellow) in open space. Bottom 
right: an example for transitioning from states with large absolute weights to states with small 
absolute weights, in which the agent lost a life (circled in red). 

Correctly Identified States 

Incoming enemies. Incoming enemies and missile.

Destroying an enemy. Losing a life.

Incorrectly Identified States 

Screen flickering. Flying in open space.

Evaluating Performance and State Weights

Performance on 17 datasets. The proposed method outperforms BT on nine of the datasets. 
On four of the rest, it has similar performance with BT. These results show that performance 
is not sacrificed for interpretability.

Cumulative returns as we remove samples according to state importance. X-axis: ratio of 
samples removed. Y-axis: cumulative returns. Performance worsens as we remove samples 
according to learned state importance. This confirms that the weights characterize how critical 
states are for the corresponding task. 


