
• Preference-based RL develops agents using human preferences.
• We argue for interpretability as a first principle. However, prior

techniques can't select samples for explanation systematically.
• We propose to learn state importance and reward function together.

Motivation

Approach

Inspecting Reward Models using State Weights

Conclusion

• We propose a method for systematically selecting samples to
interpret a reward model learned from human preferences.

• We confirm that the learned weights indeed characterize state
importance.

• With the proposed model, we obtain insights for reward models
learned from preferences.

Guoxi Zhang1, Hisashi Kashima1,2
1Graduate School of Informatics, Kyoto University
2RIKEN Guardian Robot Project

Learning State Importance for Preference-based
Reinforcement Learning

𝜏! and 𝜏" Two trajectories being compared.
𝑐 𝑐 = 1 if 𝜏! is preferred over 𝜏". 𝑐 = 0 otherwise.
𝑓# 𝒮 → ℝ$, a function that encode states into dense vectors.
𝑓% ℝ$ → ℝ, a function that computes state weights.
𝜃& A vector in ℝ$ that is part of the reward function.

Contact & Acknowledgement
Guoxi Zhang guoxi@ml.ist.i.kyoto-u.ac.jp
Hisashi Kashima kashima@i.kyoto-u.ac.jp
This work was supported by JST CREST (JPMJCR21D1).

Evaluating State Weights and Performance

Annotators

Trajectories Reward Model

≻

Preferences

0.1 0.2 1.0

0.1 0.1 0.1
Reward-Augmented Trajectories

RL Agent

Reward Learning Flow

Policy Learning Flow

Critical States

The return of a trajectory is modeled as: 𝐺 𝜏 = 𝜃&(∑)∈+ 𝑓% 𝑓# 𝑠 𝑓#(𝑠).
The larger |𝑓% 𝑓# 𝑠 | is, the more important this state is for 𝐺(𝜏).
Assume a probabilistic model for preferences:

P 𝑐 = 1; 𝜏!, 𝜏" = ,-.(0(+!))
,-. 0 +! 2,-.(0(+"))

.

Modeling Preferences

Learning Rewards and State Weights
We propose to use 𝐿 = 𝐿3, + 𝜆!𝐿! + 𝜆"𝐿" as objective function.

𝐿3, = −𝔼 𝑐 log P 𝑐 = 1; 𝜏!, 𝜏" + (1 − 𝑐)P 𝑐 = 0; 𝜏!, 𝜏" .
Minimization of 𝐿3, leads to a reward model that explains preferences.
We make the following two assumptions for state weights: (a) only few
states are critical for preferences, and (b) the critical states span
multiple time steps. Thus,

𝐿! = 𝔼[|𝑓%(𝑓#(𝑠))|],
𝐿" = 𝔼[(𝑓% 𝑓# 𝑠4 − 𝑓%(𝑓#(𝑠42!)))"].

𝜃&, 𝑓#, and 𝑓% are to be learned from data. After learning, we compute
the reward of a new state as: 𝑅 𝑠 = 𝜃&(𝑓% 𝑓# 𝑠 𝑓#(𝑠)

Left: A heatmap for state weights on Atari game BeamRider. Upper right: an example for
states with large absolute weights. The agent was closed to an incoming missile (circled in
green) in the presence of enemies (circled in blue). Middle right: an example for states with
weights close to zero. The agent launched missiles (circled in yellow) in open space. Bottom
right: an example for transitioning from states with large absolute weights to states with small
absolute weights, in which the agent lost a life (circled in red).

Correctly Identified States

Incoming enemies. Incoming enemies and missile.

Destroying an enemy. Losing a life.

Incorrectly Identified States

Screen flickering. Flying in open space.

Evaluating Performance and State Weights

Performance on 17 datasets. The proposed method outperforms BT on nine of the datasets.
On four of the rest, it has similar performance with BT. These results show that performance
is not sacrificed for interpretability.

Cumulative returns as we remove samples according to state importance. X-axis: ratio of
samples removed. Y-axis: cumulative returns. Performance worsens as we remove samples
according to learned state importance. This confirms that the weights characterize how critical
states are for the corresponding task.

